Page last updated: 2024-11-09

6-[[(4-chlorophenyl)thio]methyl]-2-phenyl-1,7-dihydropyrazolo[3,4-b]pyridine-3,4-dione

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID1862335
CHEMBL ID3144871
CHEBI ID109066
SCHEMBL ID5306853

Synonyms (23)

Synonym
6-[(4-chlorophenyl)sulfanylmethyl]-2-phenyl-1,7-dihydropyrazolo[3,4-b]pyridine-3,4-dione
CHEMDIV3_015028
smr000415807
6-(4-chloro-phenylsulfanylmethyl)-2-phenyl-1,2-dihydro-7h-pyrazolo[3,4-b]pyridine-3,4-dione
MLS000779097 ,
STK210088
6-{[(4-chlorophenyl)sulfanyl]methyl}-2-phenyl-1h-pyrazolo[3,4-b]pyridine-3,4(2h,7h)-dione
CHEBI:109066
HMS1515L02
AKOS001713099
6-{[(4-chlorophenyl)sulfanyl]methyl}-4-hydroxy-2-phenyl-1,2-dihydro-3h-pyrazolo[3,4-b]pyridin-3-one
STK586764
CCG-121798
AKOS005509565
HMS2755M15
SCHEMBL5306853
6-[[(4-chlorophenyl)thio]methyl]-2-phenyl-1,7-dihydropyrazolo[3,4-b]pyridine-3,4-dione
cid_1862335
bdbm55042
6-[[(4-chlorophenyl)thio]methyl]-2-phenyl-1,7-dihydropyrazolo[3,4-b]pyridine-3,4-quinone
CHEMBL3144871
Q27188092
6-{[(4-chlorophenyl)sulfanyl]methyl}-2-phenyl-1h,2h,3h,4h,7h-pyrazolo[3,4-b]pyridine-3,4-dione
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (2)

ClassDescription
pyrazoles
ring assemblyTwo or more cyclic systems (single rings or fused systems) which are directly joined to each other by double or single bonds are named ring assemblies when the number of such direct ring junctions is one less than the number of cyclic systems involved.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (19)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, JmjC domain-containing histone demethylation protein 3AHomo sapiens (human)Potency50.11870.631035.7641100.0000AID504339
Chain A, ATP-DEPENDENT DNA HELICASE Q1Homo sapiens (human)Potency35.48130.125919.1169125.8920AID2549
LuciferasePhotinus pyralis (common eastern firefly)Potency26.85450.007215.758889.3584AID588342
Microtubule-associated protein tauHomo sapiens (human)Potency5.01190.180013.557439.8107AID1460
thioredoxin glutathione reductaseSchistosoma mansoniPotency44.66840.100022.9075100.0000AID485364
bromodomain adjacent to zinc finger domain 2BHomo sapiens (human)Potency35.48130.707936.904389.1251AID504333
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency39.81070.035520.977089.1251AID504332
lysosomal alpha-glucosidase preproproteinHomo sapiens (human)Potency35.48130.036619.637650.1187AID2100
vitamin D3 receptor isoform VDRAHomo sapiens (human)Potency100.00000.354828.065989.1251AID504847
chromobox protein homolog 1Homo sapiens (human)Potency35.48130.006026.168889.1251AID540317
DNA polymerase betaHomo sapiens (human)Potency39.81070.022421.010289.1251AID485314
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1Homo sapiens (human)Potency67.45550.425612.059128.1838AID504891
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency22.38720.050127.073689.1251AID588590
lethal(3)malignant brain tumor-like protein 1 isoform IHomo sapiens (human)Potency28.18380.075215.225339.8107AID485360
DNA polymerase kappa isoform 1Homo sapiens (human)Potency89.12510.031622.3146100.0000AID588579
Rap guanine nucleotide exchange factor 3Homo sapiens (human)Potency56.23416.309660.2008112.2020AID720709
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
NS3, partialIC50 (µMol)5.22405.22405.22405.2240AID2173
large T antigenBetapolyomavirus macacaeIC50 (µMol)100.00000.160024.9724100.0000AID1903
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Other Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
FATTY-ACID-CoA LIGASE FADD28 (FATTY-ACID-CoA SYNTHETASE) (FATTY-ACID-CoA SYNTHASE)Mycobacterium tuberculosis H37RvAC5023.43002.730045.826498.7200AID624273
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (20)

Processvia Protein(s)Taxonomy
angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
adaptive immune responseRap guanine nucleotide exchange factor 3Homo sapiens (human)
signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayRap guanine nucleotide exchange factor 3Homo sapiens (human)
associative learningRap guanine nucleotide exchange factor 3Homo sapiens (human)
Rap protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of actin cytoskeleton organizationRap guanine nucleotide exchange factor 3Homo sapiens (human)
negative regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
intracellular signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of GTPase activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of protein export from nucleusRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of stress fiber assemblyRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
establishment of endothelial barrierRap guanine nucleotide exchange factor 3Homo sapiens (human)
cellular response to cAMPRap guanine nucleotide exchange factor 3Homo sapiens (human)
Ras protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of insulin secretionRap guanine nucleotide exchange factor 3Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (4)

Processvia Protein(s)Taxonomy
guanyl-nucleotide exchange factor activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein domain specific bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
cAMP bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (8)

Processvia Protein(s)Taxonomy
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
cortical actin cytoskeletonRap guanine nucleotide exchange factor 3Homo sapiens (human)
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
microvillusRap guanine nucleotide exchange factor 3Homo sapiens (human)
endomembrane systemRap guanine nucleotide exchange factor 3Homo sapiens (human)
membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
lamellipodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
filopodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
extracellular exosomeRap guanine nucleotide exchange factor 3Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (15)

Assay IDTitleYearJournalArticle
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (7)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (14.29)29.6817
2010's5 (71.43)24.3611
2020's1 (14.29)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.20

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.20 (24.57)
Research Supply Index2.08 (2.92)
Research Growth Index4.28 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.20)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other7 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]